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ABSTRACT

Vision-Language Navigation is a task where an agent must navigate different environ-

ments following natural language instructions. This demanding task is usually approached

via machine learning methods, training the agent to learn navigation strategies that follow

what is said in the instruction and grounding it with what’s seen from its environment.

However, there is still a gap between human performance and current Vision-Language

Navigation models. These instructions usually refer to objects present in the agent’s scene,

so proper understanding of what’s around the agent is necessary to understand where to go

and when to stop. This understanding is left to be learned implicitly from the global fea-

tures of its vision, which are not designed to do object detection. In this work, we propose

methods to include and attend to objects during navigation in recurrent and transformer

based architectures. We achieve a 1.6% improvement over the base models in unseen en-

vironments. But we also see that these models also take advantage of the objects to overfit

on seen environments, increasing the gap between the validation seen and unseen splits.

Keywords: Vision-Language Navigation, Deep Learning, Computer Vision, Object De-

tection, Natural Language Processing, Auxiliary Tasks.
xii
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RESUMEN

En la tarea de Navegación por Visión y Lenguaje, un agente debe navegar distintos

entornos de acuerdo con una instrucción en lenguaje natural. Esta demandante tarea es

comúnmente abordada a través de técnicas de aprendizaje de máquina, los cuales entre-

nan al agente a aprender estrategias de navegación que siguen lo dicho en la instrucción,

aterrizándola a lo que puede ver de su entorno. Actualmente, existe una brecha entre el

rendimiento humano y el de modelos de Navegación por Visión y Lenguaje. Estas in-

strucciones usualmente hacen referencia a objetos que están presentes en el entorno del

agente, y el entendimiento de lo que este tiene a su alrededor es necesario para entender

hacia donde ir y donde detenerse. Usualmente, este entendimiento se deja para apren-

der de forma implı́cita desde las caracterı́sticas globales de su visión, las cuales no están

diseñadas para detectar objetos. En este trabajo se proponen métodos para incluir y aten-

der objetos durante la navegación del agente con modelos basados en arquitecturas recur-

rentes o de transformadores. Nuestro método alcanza una mejora relativa de 1.6% sobre

los modelos base en entornos desconocidos. A pesar de esto, también se concluye que es-

tos modelos aprovechan la información de objetos para sobreajustar a entornos conocidos,

aumentando la brecha entre los conjuntos de validación conocidos y desconocidos.

Palabras Claves: Navegación por Visión y Lenguaje, Aprendizaje Profundo, Visión por

Computador, Detección de Objetos, Procesamiento de Lenguaje Natural, Tareas Auxil-

iares.
xiii
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1. INTRODUCTION

1.1. Motivation

Recent advances in computer vision and natural language processing using deep learn-

ing have had great success in a variety of tasks, such as object recognition and language

modeling. Following this, there has been increasing interest in combining both modali-

ties, leading to the creation of new challenges in tasks such as Visual Question Answering

(Antol et al., 2015; Singh et al., 2019; Biten et al., 2019), Image Captioning (Mao et

al., 2014; X. Chen et al., 2015), Referring Expression Recognition (Kazemzadeh, Or-

donez, Matten, & Berg, 2014; Mao et al., 2016), Image Retrieval (Mezaris, Kompatsiaris,

& Strintzis, 2003; Wu et al., 2021) and Activity Recognition (Yatskar, Zettlemoyer, &

Farhadi, 2016), among others.

With the advent of vision and language related tasks, a natural step is to explore the

interaction and communication between an embodied agent and humans. In a way, this

leads to the problem of Vision and Language Navigation (VLN), in which a human gives

a natural language instruction to the agent, who must then be able to navigate and reach a

goal in correspondence to the instruction. A solution to this task leads to better navigation

and route planning mechanisms, following human instructions. This would allow for bet-

ter and safer navigation of an agent, as it would take the route specified by a human who

might have prior knowledge of its environment and doesn’t want the agent to take a short-

est route approach. This has many applications, such as guiding a self-driving car towards

your destination or item retrieval within a house or storage area, while taking preferred

routes or avoiding potentially dangerous areas.

Recently, a diverse set of open tasks have been proposed for developing and testing

agents in VLN. One of the most common tasks is Room-to-Room (R2R) (Anderson et al.,

2017), in which the agent must navigate a photo-realistic house environment to reach a

goal in accordance to a given natural language instruction. Current state of the art models

1
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reach the goal around 80%1 of the time, but they take extremely long paths or require an

expensive pre-exploration phase, both of which are not realistic in real world applications.

Those that have realistic path lengths or don’t use pre-exploration only reach their goal

around 65%2 of the time. This shows that the R2R task is an open problem, as humans

are able to reach the goal 86% of the time (Anderson et al., 2017) on previously unseen

environments and with realistic path lengths.

Current challenges in R2R reside in the alignment between the visual and language

inputs, with some research showing that an agent can go blind or not completely take

advantage of the visual input and still reach its destination (Hu et al., 2019; W. Zhu et al.,

2021; Ossandón et al., 2022). Based on these challenges, this thesis proposes a way to

explicitly include objects present in the agent’s scene to improve the alignment between

objects seen in the environment to those referred to in the given instruction.

1.2. Thesis Overview

Chapter 2 introduces background information required to understand the core concepts

of the proposed method. It gives a brief overview of Deep Learning and it’s techniques,

such as Convolutional Neural Networks, Object Detection, Recurrent Neural Networks,

Transformers and Auxiliary Tasks.

Chapter 3 gives an introduction to the Vision and Language Navigation task, and

summarizes previous work related to the task. This includes environments, simulators,

datasets, models, metrics, and other techniques currently used for this task. It also shows

research on current issues with state of the art models.

Chapter 4 gives a detailed description of the proposed method. This includes its intu-

ition, data sources, a description of the base models used for the solution, a description of

the proposed module to be included in these models, and their implementation.

1According to the leaderboard at https://www.bringmeaspoon.org
2Also according to https://www.bringmeaspoon.org

2
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Chapter 5 describes experiments along with the datasets used for them.

Chapter 6 provides quantitative and qualitative results and their analysis, as well as an

ablation study of the proposed module.

Finally, chapter 7 presents a conclusion that summarizes the work done, results ob-

tained and their implication for the task. It also describes future work that could be done

to extend this work.

3
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2. BACKGROUND INFORMATION

2.1. Deep Learning

Deep Learning methods are representation-learning methods, obtained by composing

simple non-linear modules that each transform the representation at one level into a repre-

sentation at a higher, slightly more abstract level (LeCun, Bengio, & Hinton, 2015). These

modules correspond to a layer of perceptrons, followed by an activation function, such as

a sigmoid, and its composition is usually called a multi-layer perceptron, or MLP. The

key aspect of deep learning is that these representations are not designed by humans, they

are learned from data by using a general-purpose learning procedure such as Stochastic

Gradient Descent (LeCun et al., 2015).

The core aspects of Deep Learning consist of the design of a network architecture, the

collection and processing of data, a loss function and an optimization algorithm (LeCun

et al., 2015).

Aside from the MLP architecture, other compositions of perceptron layers have been

designed, proving to be successful in a variety of tasks. In the following sections, we’ll

review some of these which are relevant to this thesis’ work.

2.1.1. Convolutional Neural Networks

Convolutional Neural Networks (CNN) are currently one of the most popular Deep

Learning architectures in computer vision. These networks are designed to process data

that comes in the form of multiple arrays, such as the three color components of a 2D

image, each pixel containing the intensity of the red, green and blue colors (LeCun et

al., 2015). They are composed of filter banks, which are then passed through the data as

a discrete convolution, generating one feature map per filter in the bank (LeCun et al.,

2015). A high level diagram of these networks can be seen in Figure 2.1. The advantage

4
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Figure 2.1. Example of CNN architecture. In this example, an image is fed
into the network as an input, which produces an output vector that can be
used for classification or as a representation for other downstream tasks.

of these networks is that they are, by design, translation invariant, which is desirable when

looking for certain patterns present in any location of the given input.

Each of the layers of a CNN detects the most common patterns, which are then used by

the following layer to compose them into more complex patterns (Krizhevsky, Sutskever,

& Hinton, 2017). For example, take a number recognition task. The first layer would

probably detect edges, the second would compose them into segments, the third into parts

like lines or circles, and the last layer would recognize the different possible numbers.

2.1.1.1. Object Detection

Object detection is a task that usually involves the use of convolutional neural net-

works. The goal of this task is to generate bounding boxes within an image in areas where

different entities (like persons, chairs or cars) are present and classify them from a set of

classes. Object detection architectures use CNNs to regress these bounding boxes and to

classify the objects. Examples of these architectures are Faster-RCNN (Ren, He, Girshick,

& Sun, 2015) and YOLO (Redmon & Farhadi, 2018). An example of this task can be seen

in Figure 2.2.

5
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Figure 2.2. Example of the object detection task. Objects in this image
have been identified, located and classified. Colored bounding boxes and
class labels for each object are shown in the picture.

2.1.2. Recurrent Neural Networks

For tasks that involve sequential inputs and/or outputs, such as text or VLN, Recurrent

Neural Networks (RNN) are usually preferred. RNNs process an input sequence one ele-

ment at a time, maintaining in their hidden units a state vector which contains information

of all past elements of the sequence (LeCun et al., 2015). These networks have been found

to be very good at predicting the next character in text or the next word in a sentence, but

they have also been used in more complex tasks (LeCun et al., 2015).

One of the most popular RNNs are Long Short-Term Memory networks (LSTM),

which contain memory cells and gate units, allowing the network to select certain informa-

tion in their hidden state to remember or forget as it sees fit (Hochreiter & Schmidhuber,

1997). LSTM networks have solved gradient related problems of classic RNNs, which

typically tend to vanish or explode over time (Bengio, Simard, & Frasconi, 1994), thus

allowing them to properly learn with long sequential data. The architecture of a LSTM

cell can be seen in Figure 2.3.

6
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Figure 2.3. LSTM cell architecture. This network takes as previous cell
state (ht−1, ct−1) and an input vector xt, generating a new state (ht, ct) to
be used in subsequent steps of the RNN. The hidden state ht is usually
also used as a representation for the current time step for other downstream
tasks.

2.1.2.1. Transformers

Attention mechanisms have become an integral part of sequence modeling and trans-

duction models in various tasks, usually used in conjunction with RNNs (Vaswani et al.,

2017). These mechanisms can be described as a mapping of a query and a set of key-value

pairs to an output, with all of these components represented with vectors. The output

corresponds to a weighted sum of the values, where the weights are computed via some

similarity function between the query and the keys.

Transformer architectures, introduced by Vaswani et al. (2017), eliminates the need

for recurrent networks and instead rely entirely on attention mechanisms to draw global

dependencies between inputs and outputs. They are significantly more parallelizable than

recurrent networks (Vaswani et al., 2017), and have been used on state of the art architec-

tures in various tasks.

A popular transformer based approach for language modeling is BERT (Devlin, Chang,

Lee, & Toutanova, 2019), which is designed to pre-train deep bidirectional representations

from unlabeled text by jointly conditioning on both left and right context in all layers. As a

result, the pre-trained BERT model can be fine-tuned with just one additional output layer
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to create state-of-the-art models for a wide range of tasks, such as question answering and

language inference, without substantial task-specific architecture modifications.

2.1.3. Auxiliary Tasks

Auxiliary tasks correspond to other tasks parallel to the main objective, and are in-

troduced as extra terms in the loss function, sometimes also including extra parameters

within the deep learning model. They have been shown to serve as a regularizer by in-

cluding an inductive bias to assist in learning useful features for the main task within the

shared hidden layers (Y. Liu, Zhuang, Shen, Chen, & Yin, 2019). Once the training is

done, these auxiliary tasks are usually removed as they are not required for performing

inference on the main objective.
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3. RELATED WORK

3.1. Vision-Language Navigation

Recently, a diverse set of tasks have been proposed within the scope of Vision and Lan-

guage Navigation (VLN), in which an agent must navigate its visual environment given a

natural language instruction.

Based on the photo-realistic scans in Matterport3D (Chang et al., 2017), Anderson et

al. (2017) introduce the first benchmark dataset for visually-grounded natural language

navigation in real buildings, named Room-to-Room (R2R). Subsequently, Qi et al. (2019)

introduce REVERIE, also based on Matterport3D, in which the task not only consists on

navigation, but also includes identification and localization of a specific object mentioned

in the instruction. Following the popularity of the R2R dataset, many biases have been

identified in the paths that it labeled, for which Ku, Anderson, Patel, Ie, and Baldridge

(2020) introduce a new benchmark dataset, Room-Across-Room (RxR), addressing many

of these biases, also including dense spatio-temporal grounding and instructions in Hindi

and Telugu, as well as English.

On the other hand, some datasets are based on simulated artificial environments, such

as gSCAN (Ruis, Andreas, Baroni, Bouchacourt, & Lake, 2020), focused on evaluating

compositional generalization in situated language understanding within a grid-world, and

ALFRED (Shridhar et al., 2019), a benchmark for connecting natural language to actions

and objects in a simulated environment based on AI2-THOR (Kolve et al., 2017).

3.2. Room-to-Room and Room-Across-Room

The Matterport3D dataset (Chang et al., 2017) includes RGB-D building scale scenes

of 90 different home environments, annotated with data regarding present objects, rooms

and regions. Based on this dataset, Anderson et al. (2017) developed the Matterport3D

Simulator, which simulates its environments and exposes an interface for navigating within
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Figure 3.1. Example of a Matterport building (Chang et al., 2017). The
building is discretized into viewpoints, which are represented in this image
as green nodes. A connectivity graph of these nodes is also included within
the Matterport3D metadata.

them. The Room-to-Room dataset (Anderson et al., 2017) uses this simulator and divides

the home environments into training and validation (seen and unseen) splits. It also in-

cludes 7,189 distinct shortest route paths within these environments, each one with 3 dis-

tinct human instructions, totaling 21,567 instructions with an average of 29 words. An

extension of the R2R dataset was introduced by Ku et al. (2020), including more and

longer paths (no longer the shortest route), longer instructions and spatio-temporal align-

ment data between instructions and their respective paths.

On these datasets, a set of metrics are proposed to evaluate the performance of agents

solving the task:

Path Length (PL) measures the average total distance in meters traversed by the agent

until it stops.

Navigation Error (NE) represents the average error in meters between the goal and

the point the agent stopped.

Success Rate (SR) measures the percentage of predicted trajectories that end within

three meters from the goal.
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Success Rate weighted by Path Length (SPL) represents the Success Rate, but the

average is weighted by the normalized Path Length, measuring if the agent took an effi-

cient path to the goal.

Oracle Success Rate (OSR) represent the success rate, but taking a successful navi-

gation as one that passes within three meters of the goal at some point in the trajectory.

This work is developed using the Room-to-Room dataset and these metrics for training

and evaluating deep learning models.

3.3. Models and Aproximations

Within the framework of the R2R and RxR datasets, a diverse set of architectures, data

augmentation strategies and training methodologies are proposed. Originally, Anderson et

al. (2017) introduce an LSTM based sequence to sequence neural network agent with an

attention mechanism, upon which many future improvements are based.

3.3.1. Data Augmentation

Regarding data augmentation strategies, Fried et al. (2018) introduce a speaker model

which synthesizes new instructions and evaluates how well a candidate action sequence

explains an instruction. Similarly, Ossandón et al. (2022) present a new method for gener-

ating instructions with a focus on objects visible in the agent’s environment. Both works

show that the agent’s generalization and performance increase when trained with these

generated instructions.

Tan, Yu, and Bansal (2019) address the problem that agents perform dramatically

worse in unseen environments by introducing an environment dropout data augmentation

strategy, which improves upon environment variability.
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C. Liu, Zhu, Chang, Liang, and Shen (2021) introduce a Random Environmental

Mixup method, which generates cross connected house scenes as augmented data via mix-

ing environments.

Finally, new datasets have been introduced, which contain longer paths that are not the

shortest route. This is achieved by joining Room-to-Room routes, generating the Room-4-

Room dataset (Jain et al., 2019), as well as the Room-6-Room and Room-8-Room datasets

(W. Zhu et al., 2020).

3.3.2. Auxiliary Tasks

Many auxiliary tasks are also proposed to improve grounding and training perfor-

mance. Ma, Lu, et al. (2019) introduce a progress monitoring task, to ensure the grounded

instruction correctly reflects the navigation progress. F. Zhu, Zhu, Chang, and Liang

(2019) use a similar task to the progress monitor, an angle prediction task to learn ori-

entation from the visual features, a trajectory retelling task, making the agent reconstruct

the instruction from the trajectory in an end to end fashion, and a cross modal matching

task, making the agent identify whether a given instruction is consistent with the trajec-

tory, similarly to LXMERT (Tan & Bansal, 2019). Manterola (2021) implements a scene

recognition task, classifying the agent’s current room for every timestep, in order to build

a more robust representation of the world. Finally, Qi et al. (2021) use the progress esti-

mator, a direction prediction task, and a scene recognition task, which aims to classify the

corresponding room for the goal and next timestep.

3.3.3. Navigation Strategies

Some approaches address different navigation strategies to handle uncertainty and ro-

bustness upon erroneous actions. Ma, Wu, AlRegib, Xiong, and Kira (2019) take advan-

tage of the progress monitor auxiliary task as a learnable heuristic, allowing the agent to

rollback to a previous state if the progress estimation decreases by more than a predefined

threshold. Wang, Wang, Liang, Xiong, and Shen (2021) maintains a memory of all seen
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nodes during its navigation and allows action selection based on a global action space

instead of a local one (i.e. select a node from all candidates previously seen), making a

robust planning over the frontier of exploration. Finally, Wang, Wang, Shu, Liang, and

Shen (2020) introduce a method for choosing to explore a node, gather information and

update its representation to resolve ambiguity and uncertainty.

3.3.4. Pre-Training

Other approaches take advantage of pre-training strategies to improve a model’s repre-

sentation of the world and instructions in order to improve navigation performance when

training with the full dataset. Majumdar et al. (2020) pre-trains a transformer based ar-

chitecture with image-text pairs from the web, allowing the agent to learn better correla-

tion between its visual and linguistic inputs. Shen et al. (2021) use contrastive learning

to pre-train a visual encoder that takes into account a natural language input, and uses

it in a series of vision and language tasks, such as R2R. S. Chen et al. (2021) imple-

ment a language-model like pre-training for its BERT based architecture, including tasks

like Masked Language Modeling, Masked Region Modeling, Single Step Action Predic-

tion/Regression and Instruction Trajectory Matching. Finally, W. Zhu et al. (2020) use

curriculum-based reinforcement learning to maximize rewards on navigation tasks with

increasingly longer instructions.

3.3.5. Transformer based models

While most models are RNN based, other approaches use transformers as their encoder-

decoder architecture. Majumdar et al. (2020) and Qi et al. (2021) implement a recurrent

modification of a BERT based architecture. On the other hand S. Chen et al. (2021) also

use a BERT based model, but propose a method of keeping the navigation context based

on all previously seen panoramas instead of a recurrent modification of the architecture.
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3.3.6. Extra inputs to models

Aside from instructions and panoramic views, REVERIE includes object bounding

boxes used in its particular task. Hong, Wu, Qi, Opazo, and Gould (2020) use a trans-

former based architecture on R2R and REVERIE, only including object data when solving

the REVERIE task. On the other hand, Qi et al. (2021) replace the panoramic views in

R2R with the objects present in the scene, as annotated in REVERIE, but when solving the

R2R task. On the other hand, F. Zhu, Zhu, Long, Chang, and Liang (2020) include objects

to AuxRN (F. Zhu et al., 2019), treating them similarly to the panoramic images already

used by the architecture. Also related to objects, Hu et al. (2019) include the labels, col-

ors and bounding box coordinates, without the object’s features, extracted by an object

detector as inputs to the model, using a mixture of experts approach to further enrich the

model’s inputs. These models include objects as an additional input to the network, but

without any special processing or contextualization of them. No work was found which

contextualized objects to enrich their representation and use in action prediction.

Finally, Gao et al. (2021) include a knowledge base from ConceptNet (Speer, Chin, &

Havasi, 2016) to include this external knowledge into a scene memory module, used for

action prediction.

3.3.7. Current Limitations

Over the years, a diverse set of limitations have been detected among state of the art

models tackling R2R and similar tasks. Hu et al. (2019) find that, when removing vision

from an agent (i.e. setting its visual input to zero), the performance hardly drops, and

sometimes it improves on the unseen validation set, showing that they don’t use visual

inputs in any generalizable way.

Similarly, W. Zhu et al. (2021) investigate the agent’s perception of multimodal inputs.

They find that removing object references in the instruction greatly reduces the agent’s

14

DocuSign Envelope ID: C307350B-A6EC-4B03-B934-7EF6991A1296



performance. On the other hand, when masking out objects in the agent’s vision, its per-

formance drop isn’t as significant. They conclude that agents are not able to properly align

objects in their visual perception to those present in the instruction.
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4. PROPOSED METHOD

4.1. Object contextualization

Current state of the art models have a way of crossing the information coming from the

multi-modal inputs, usually done by some form of attention mechanism. This, being done

with the global features extracted via a ResNet-152 convolutional network (He, Zhang,

Ren, & Sun, 2015), gives current state of the art results. But, according to the findings of

Hu et al. (2019) and W. Zhu et al. (2021), these models are not really taking advantage of

the information present in their visual perception. Also, these visual features are designed

for image classification and not object detection, so their encoded information may be

limited by this.

This work focuses on including object specific information as an input to these models

in a way that can complement the global visual information, improving the alignment

between objects mentioned in the instruction and objects seen in the environment.

4.2. Intuition

Instructions in the R2R dataset rely on references to objects present in the scenes

the agent traverses. As such, it is exceedingly important for the agent to have a proper

knowledge and understanding of the objects it sees and how they align with the given

instruction. If an agent is given an instruction that ends with “Go straight until you reach

the table and wait there”, knowing where the table is in relation to the agent is a rich source

of information, instantly letting it know where to go or if it has reached its destination.

Properly being able to align the objects mentioned in the instruction with those seen in the

agent’s environment should allow it to improve its navigation performance, as it can use

these references to monitor its progress and reduce uncertainty while navigating.
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4.3. Data Sources and Preprocessing

This work uses the data available for the R2R (Anderson et al., 2017) task, which

provides instructions for paths within home environments made available in Matterport3D

(Chang et al., 2017). This includes 7,189 shortest route paths within 90 different home

environments. Each path contains 3 human instructions, totaling 21,567 instructions with

an average of 29 words.

We also use the data generated by Ossandón et al. (2022), which includes 178,300

sampled paths, each with its own instructions. These have a special focus on objects

present within the route as reference for navigation actions. The generated data is available

only for training and validation unseen splits.

In order to make the training and evaluation of models more efficient, Anderson et al.

(2017) provide pre-computed features for the visual scenes present in Matterport3D. These

features are extracted from the mean pooling layer after the last convolution of a ResNet-

152 (He et al., 2015) network, pre-trained on ImageNet (Russakovsky et al., 2015), re-

sulting in 36 2048-dimensional vectors for each scene. On the other hand, S. Chen et al.

(2021) extract pre-computed features from the last layer of a visual transformer, resulting

in a 768-dimensional feature vector for each image in the panoramic.

Matterport3D also has annotations on the objects present in the scene, including their

location and label. For the proposed modification of the EnvDrop model, the last convo-

lutional map of the same ResNet-152 was extracted in order to obtain features for each of

these objects. Based on the object’s location, it’s position in the corresponding image was

computed, which was then used to find its proportional position within the convolutional

map. A region of interest (ROI) pooling method is used to extract a 2 × 2 × 2048 tensor,

centered on the position of the object in the convolutional map, as the features of a specific

object.
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For the proposed modification of the HAMT model, object bounding boxes were com-

puted based on the orientation and vertical field of view of each object. The corresponding

image to each bounding box was then used to compute the object’s features by passing it

through the same visual transformer used to precompute panoramic features. Object and

room labels are also kept for an auxiliary classification task.

4.4. Problem Setup

The R2R task (Anderson et al., 2017) requires an agent to find a route from a start

viewpoint to a target viewpoint according to a given instruction I . At each timestep t,

the agent’s observation consists of a panoramic view Ot discretized into 36 single views1

Vt = {vt,i}36i=1. Each of these views vt,i is an RGB image, accompanied by its heading

θt,i and elevation φt,i in radians. The agent is also given a set K of navigable viewpoints

Ct = {vt,k}k∈K , which correspond to |K| − 1 reachable and visible locations from the

current viewpoint, as well as the stop action. This problem can also be thought as a

Partially Observable Markov Decision Process, where the states consist of the panoramic

views Ot, the actions are the navigable viewpoints Ct and the model’s goal is to choose

actions at each timestep that maximizes its expected future discounted reward by learning

to predict the conditional transition probabilities pt(at,k) between states.

As is usually done, views are preprocessed through a ResNet-152 (He et al., 2015),

resulting in features ft,i = ResNet(vt,i). For HAMT (S. Chen et al., 2021), views are

preprocessed through a visual transformer, resulting in features ft,i = V iT (vt,i).

In this work, we also add objects visible from the current viewpoint Ot = {ot,i}|Ot|
i=0 ,

which correspond to the pixels within bounding boxes of these objects on the 36 views of

the panorama.

1The panoramic view covers 360◦ horizontally and 90◦ vertically. Each single view covers 30◦ horizontally
and vertically, resulting in 3 elevation and 12 headings.
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Figure 4.1. EnvDrop model architecture. This model consists of an
encoder-decoder network. The encoder takes a text instruction and pro-
duces the textual context ui. The decoder takes the visual input and can-
didates in each timestep and uses the textual context to decode the current
timestep’s probability for each candidate action p(at).

4.5. EnvDrop Model

Our work builds over the EnvDrop model (Tan et al., 2019). A diagram of this model

can be seen in Figure 4.1. They implement an encoder-decoder model, where the encoder

is a bidirectional LSTM with an embedding layer for each word token wi in the instruction

I:

ŵi = embedding(wj) (4.1)

u1 . . . , uL = Bi-LSTM(ŵ1, . . . , ŵL) (4.2)

The decoder of the agent corresponds to an attentive LSTM. At each decoding step t,

the view features {ft,i} are attended, resulting in the attentive visual feature f̃t:
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at,i = softmaxi(f
⊤
t,i WF h̃t−1) (4.3)

f̃t =
∑
i

αt,ift,i (4.4)

The input of the decoder corresponds to the concatenation of the attentive visual fea-

ture f̃t and an embedding of the previous selected action ãt−1. The hidden output ht of the

decoder LSTM is combined with the attentive instruction feature ũt to form an instruction-

aware hidden output h̃t:

ht = LSTM
([

f̃t; ãt−1

]
, h̃t−1

)
(4.5)

bt,j = softmaxj(u
⊤
j WU ht) (4.6)

ũt =
∑
j

βt,juj (4.7)

h̃t = tanh
(
W

[
ũt;ht

])
(4.8)

Finally, the probability pt(at,k) of moving to the k-th navigable viewpoint is calculated

as the softmax of the alignment of the navigable feature ft,k and the instruction-aware

hidden input:

pt(at,k) = softmaxk(f
⊤
t,k WG h̃t) (4.9)

4.5.1. Object and Language Contextualization Module (OLC)

In this work, an object and language contextualization (OLC) module is designed to

be easily integrated into existing recurrent based models. It has as an input the object

20

DocuSign Envelope ID: C307350B-A6EC-4B03-B934-7EF6991A1296



Figure 4.2. Object Feature Reducer. It takes as an input the current view-
point’s objects’ feature vector ot and orientation ϕo

t . It produces two out-
puts: a summary vector ōt which represents the objects present in the cur-
rent viewpoint, and a size-reduced feature vector ored

t,i for each object.

features Ot = {ot,i} and orientations ϕo
t,i = (θot,i, φ

o
t,i), a navigation context ct for the

current timestep2, and the navigable viewpoints orientations ϕf
t,j = (θft,j, φ

f
t,j).

4.5.2. Object Feature Reducer

Object features come from ROI-aligned features of the last convolutional map used to

compute ft,i. In order to reduce their size and flatten the features, they are passed through

a 1x1 convolution, combined with their orientation and processed by a linear layer, as

shown in Figure 4.2. This results in the reduced object features ored
t,i :

o′t,i = Conv1×1(ot,i) (4.10)

ored
t,i = Wr [o

′
t,i;ϕ

o
t,i] (4.11)

Where Wr is a learnable parameter.

In order to be able to use object information to include in the decoder’s input, an object

summary ōt is also computed via flattening the collection of object features and passing

through a linear layer:

2In the case of the EnvDrop model, this corresponds to the instruction-aware hidden output h̃t.
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Figure 4.3. Connectionwise Object Heading Similarity. Computes the
similarity between the orientation of an object ϕo

t,i and a navigable view-
point ϕf

t,i, outputting ôt,j,i: a weighted sum of the object features ored
t,i for

each navigable viewpoint.

ōt = Ws flatten(ored
t,i ) (4.12)

Where Ws is a learnable parameter. This summary contains information of all the

objects present in the agent’s scene.

For example, this summary can be used in the EnvDrop model by including the object

summary in the computation of the decoder’s hidden state ht in Equation 4.5:

ht = LSTM
([

f̃t; ãt−1; ōt
]
, h̃t−1

)
(4.13)

4.5.3. Connectionwise Object Heading Similarity

In order to explicitly give the agent the capability to attend to the objects in an inde-

pendent manner for each navigable viewpoint, they are attended according to their orien-

tations. The module, shown in Figure 4.3, aims to do this. In this way, for each navigable

viewpoint j, a score γt,j,i is computed for each object i. Then, a representation for each

object in each viewpoint (ôt,j,i) is computed by weighing the objects with this score:
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γt,j,i = softmaxi((ϕ
f
t,j)

⊤ Wγ ϕ
o
t,i) (4.14)

ôt,j,i = γt,j,i o
red
t,i (4.15)

Where Wγ is a learnable parameter. The vector ôt,j,i contains information of the i-th

object’s feature, orientation and relative orientation to the j-th navigable viewpoint.

4.5.4. Connectionwise Object Attention

Finally, this module is used to obtain a representation of the relevant objects for each

navigable viewpoint. An attention mechanism is used to contextualize objects for a navi-

gable viewpoint according to the navigation context input ct, resulting in a representation

for each navigable viewpoint õt,j:

ϕt,j,i = softmaxi(ôt,j,i Wϕ ct) (4.16)

õt,j =
∑
i

ϕt,j,iot,j,i (4.17)

This representation can be used to assist in the selection of the next navigable action.

For example, in the EnvDrop model, the probability pt(at,k) of moving to the k-th naviga-

ble viewpoint (shown in equation 4.9) is now computed as:

pt(at,k) = softmaxk

(
[ft,k; õt,k]

⊤ WG h̃t

)
(4.18)

A complete diagram of the proposed module is shown in Figure 4.4, and it’s integration

with the base model is shown in Figure 4.5.

23

DocuSign Envelope ID: C307350B-A6EC-4B03-B934-7EF6991A1296



Figure 4.4. A complete diagram of our Object and Language Contextu-
alization module. It takes as input the object features and orientations, a
navigation context input and navigable viewpoint orientations. Its output is
a summary representation of the objects seen in the current panorama, and
a representation of relevant objects for each navigable viewpoint, contex-
tualized with the navigation context.

Figure 4.5. A diagram of our module integrated within the EnvDrop
model. It uses the instruction-aware hidden state as navigation context,
and its outputs are integrated into the decoder’s input (ōt) and action selec-
tion (õt,j).
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4.5.5. Object Classification Auxiliary Task

If object labels o∗t,i are present as an input. An optional auxiliary task can be included

within the module. This task aims to classify these objects into their correct category,

further grounding the differences between object classes. This is done via two sequential

linear layers over the reduced object features ored
t,i , followed by a softmax activation. This

results in the probability po(ot,i) for each object to be of a certain class. The resulting loss

Lobj is then added to the base model’s loss with a weight λobj.

Lobj(ot,i, o
∗
t,i) = −

∑
j

o∗t,i,j ln
(
po(ot,i,j)

)
(4.19)

4.6. HAMT Model

This work also builds over the HAMT model (S. Chen et al., 2021). A diagram of this

model can be seen in Figure 4.6. They implement a BERT-like transformer architecture,

which takes the instruction, panoramic features, and history of panoramic features as input,

each to its own transformer. Then, the output of these transformers are passed through a

cross-modal transformer and an action prediction head to predict the agent’s next action.

They include a different token embedding for inputs of type text, history, and obser-

vation. The observation transformer also includes a navigation embedding indicating if

a view is navigable, non-navigable or the stop action. The history transformer also in-

cludes a step embedding, which is similar to a positional embedding in that it indicates the

timestep of each history panoramic input.

For the text input, the model receives a word embedding w, positional embedding EP
i

and a type embedding ET
0 .
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Figure 4.6. HAMT model architecture (S. Chen et al., 2021). It uses three
transformers to process the three inputs taken by the network. The output
of these transformers are then combined and contextualized via a cross-
modal transformer. This generates a cross-modal vector used to predict the
agent’s next action.

For the observation input, the model receives features of the panoramic features, pre-

computed using a Visual Transformer. It uses the visual features vi, relative orientation

EA
a0i

, navigable embedding EN
oi

and token type embedding ET
1

For the history input, each timestep panoramic is represented by a feature vhi com-

puted via their Hierarchical History Transformer. It uses this history feature vhi , action

orientation embedding EA
ahi

, step embedding ES
i and token type embedding ET

2 .

Finally, the result of passing these inputs through their own transformers is passed

through a cross-modal transformer resulting in output embeddings X ′ = (x′
cls, x

′
1, ..., x

′
L,

H ′
t = (h′

cls, h
′
1, ..., h

′
t−1) and O′

t = (o′1, ..., o
′
K , o

′
STOP ) for tokens in text, history and ob-

servation, respectively.

These tokens are then used for a variety of pre-training tasks, such as Masked Lan-

guage Modeling, Masked Region Modeling, Instruction Trajectory Matching, Single Step

Action Prediction, Single Step Action Regression and Spatial Relationship Prediction.

Finally, after pre-training, the model is fine-tuned reusing the Single Step Action Pre-

diction head with imitation and reinforcement learning approaches.
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Figure 4.7. Object transformer. Similar to the visual transformer, it takes
as an input the objects’ visual features, orientations and their corresponding
position and type embedding. Its output is a representation for each object,
which will be included in the cross-modal transformer to further contextu-
alize the other inputs.

4.6.1. Object Transformer

In order to include object features in HAMT, a new transformer is added to the archi-

tecture. This transformer, as seen in Figure 4.7, takes as an input the features oi of the

objects present in the current scene. Each object includes a position embedding pi, which

indicates the relative orientation of the object to the agent, and an object type embedding

ET
3 .

The results of this object transformer will also be included in the cross-modal trans-

former, in conjunction with the text, history and observation inputs, producing output

embeddings Q′
t = (q′1, ..., q

′
N). In this way, the information encoded in the other embed-

dings will also include information of the objects present in the scene. Figure 4.8 shows

HAMT with the proposed module.

4.6.2. Object Auxiliary Tasks

In order to adopt the pre-training strategy used in HAMT, two auxiliary tasks are im-

plemented to be performed with object output embeddings Q′
t.
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Figure 4.8. A diagram of our module included in HAMT. It extends the
transformer architecture with an object transformer, which helps contextu-
alize the instruction, history, and observations.

Similar to Section 4.5.5, an object classification task is implemented, in which the

model must be able to predict the object’s label as annotated in the Matterport dataset. This

is done via two sequential linear layers over the attended object features q′t,i, followed by a

softmax activation. This results in the probability po(q
′
t,i) for each object to be of a certain

class. The resulting loss Lobj is then added to the base model’s loss during pre-training.

Lobj(ot,i, o
∗
t,i) = −

∑
j

o∗t,i,j ln
(
po(ot,i,j)

)
(4.20)

Using a summary of the objects present in the scene, a room classification task is

implemented, in which the model must be able to predict the room described by the objects

shown to it. This is done via computing the average of the object features and passing

it through two sequential linear layers followed by a softmax activation. This results in

probabilities pr({ot,1, ..., ot,N}). The computed loss Lroom is then added to the base model’s

loss during pre-training.

Lroom({ot,1, ..., ot,N}, r∗t ) = −
∑
i

rt,i ln
(
pr({ot,1,i, ..., ot,N,i})

)
(4.21)
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4.7. Relation between both models

HAMT’s approach is based on the use of transformers and pre-training tasks, where

our extension builds upon this by adding objects to the transformer architecture and pre-

training tasks. On the other hand, EnvDrop’s approach is similar to HAMT, but less gen-

eralized. Our extension of EnvDrop is designed to be included in a non-transformer ar-

chitecture, while maintaining the benefits of attention and an auxiliary task (no longer

pre-training) over the object inputs. In this way, our OLC module can be thought of as

similar to the approach taken for HAMT.
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5. EXPERIMENTS

5.1. Dataset

For the experiments, we use the R2R (Anderson et al., 2017) dataset and the aug-

mented data generated by Ossandón et al. (2022).

Due to the high resource requirements for training on the R2R dataset with all present

objects, we do experiments with a reduced set of environments and objects1. We use 30%

of environments from the training and validation seen splits, and all the environments in

the validation unseen split. Regarding objects, we uniformly sample a maximum of 32

objects for each viewpoint, as this was the maximum amount we were able to use with the

available GPUs2.

Because of the efficiency of transformer architectures, the full dataset is used for ex-

periments done on the HAMT model.

5.2. Experimental design

As shown in section 4, two different existing models are modified to include an object

contextualization mechanism. The same training procedure and hyperparameters as in

their original papers will be used, as detailed in this section.

5.2.1. EnvDrop experiments

We implement the described module on the EnvDrop model (Tan et al., 2019). Aside

from the baseline, two different variants are used, one which includes object summary ōt

in the recurrent decoder and the other where it isn’t included. These models are trained

with the same hyperparameters as those in the original paper.

1Selected environments and objects are listed in appendix A
2All experiments were done with either an Nvidia 1080Ti (11.2 GB) or TitanRTX (24.2 GB) GPU
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The models are optimized with the RMSProp algorithm and a learning rate of 10−4 for

150000 epochs with a batch size of 64. When the proposed module is used, 32 objects are

sampled from those present in the scene, the module outputs features with a size of 256,

and the auxiliary task weight is 0.1.

5.2.2. HAMT experiments

We also implement the HAMT model (S. Chen et al., 2021) with the object transformer

and auxiliary tasks. This model is trained in two stages: pre-training and fine-tuning. First,

we pre-train two versions of HAMT using R2R instructions, one with objects and the other

without. Then, in the fine-tuning stage, four models are fine-tuned. For each pre-trained

model, two models are generated, one fine-tuned with R2R instructions, and the other with

the craft instructions generated by Ossandón et al. (2022). These models are trained with

the same parameters shown in the original HAMT paper (S. Chen et al., 2021).

Pre-training is optimized with the AdamW algorithm, using betas 0.9 and 0.98, and

a learning rate of 5 · 10−5 with a warm-up of 10000 episodes. The pre-training lasts for

200000 episodes with a batch size of 16, using the same task mix ratio as the original

paper. When including objects, the object transformer has the same hyperparameters as

the visual transformer, while room and object tasks are included with a weight of 1 in the

mix ratio.

For fine-tuning, we use the same training parameters as in the original HAMT paper,

and the architecture matches that of the pre-training phase. The training lasts for 300000

epochs with a batch size of 8. The model is optimized with the AdamW algorithm and a

learning rate of 10−5.

5.3. Evaluation Metrics

Results are measured using the described metrics in Section 3.2 on the validation seen

and unseen splits. The main metric to compare results is success rate (SR) on the validation
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unseen splits. Path length (PL), navigation error (NE), success rate weighted by path

length (SPL) and oracle success rate (OSR) are also included in the results for comparison.
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6. ANALYSIS

6.1. Cuantitative Results

6.1.1. EnvDrop

Table 6.1 shows results for EnvDrop models trained with R2R original instructions.

By including object information during training and evaluation of the EnvDrop model,

we achieve a 6.9% absolute improvement in validation seen, and a 1.6% absolute im-

provement in validation unseen. This shows that objects in the scene can provide useful

information to the agent during navigation.

Results also show an increase of 5.7% in the generalization breach between validation

seen and unseen when including objects. This may be because the model is overfitting

towards objects present in seen environments, and has more difficulty taking advantage of

new objects in unseen environments.

Taking into account the a reduced set of training environments used, we can see that

including object information in the decision process of the agent helps in data efficiency,

obtaining better results than the baseline in this reduced data situation.

Table 6.1. Results for trained EnvDrop models using R2R instructions. *
are reproduced results.

Model Validation Seen Validation Unseen
PL (↓) NE (↓) SR (↑) SPL (↑) OSR (↑) PL (↓) NE (↓) SR (↑) SPL (↑) OSR (↑)

EnvDrop* 10.99 6.05 45.5 43.8 54.8 9.28 6.68 39.4 36.3 46.9
EnvDrop + OLC (w/o summary) 10.84 4.98 52.8 50.7 60.3 8.89 6.51 41.0 37.4 46.2

On the other hand, when training with craft instructions generated by Ossandón et al.

(2022), Table 6.2 shows an increased improvement gain than when training with R2R in-

structions, totaling a 2.3% absolute improvement over the base model. This is because

craft instructions have a greater focus on orienting the agent via objects than the instruc-

tions from the original R2R dataset. This indicates that, when there’s a strong alignment
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between objects mentioned in the instruction and those present in the scene, the inclusion

of object information can give important cues to the agent during its navigation.

Table 6.2. Results for trained EnvDrop models using Craft instructions.
These instructions don’t have data for the validation seen environment. *
are reproduced results.

Model Validation Unseen
PL (↓) NE (↓) SR (↑) SPL (↑) OSR (↑)

EnvDrop* 9.35 5.2 49.7 47.6 54.5
EnvDrop + OLC (w/o summary) 9.31 4.96 52.0 49.8 57.1

6.1.2. HAMT

Table 6.3 shows results for HAMT models trained with R2R original instructions. By

including object information into the cross modal transformer, we see an absolute im-

provement of 7.34% in validation seen and of 0.94% in validation unseen. This shows that

objects can give important cues to the agent during navigation. Regardless, this improve-

ment is particularly small in validation unseen. This may be due to the other pre-training

tasks the agent is pre-trained with, many of which require the agent to have a better visual

representation of its environment. Because of this, this extra visual information may not

be as useful as expected.

Results also show a big increase in the generalization gap. Our model obtains an

increase of 6.4% in the difference between validation seen and unseen, with respect to the

baseline. Once again, this shows a possible increase in overfitting to seen environments

through the objects available within them.

Table 6.3. Results for trained HAMT models using R2R instructions. * are
reproduced results.

Model Validation Seen Validation Unseen
PL (↓) NE (↓) SR (↑) SPL (↑) OSR (↑) PL (↓) NE (↓) SR (↑) SPL (↑) OSR (↑)

HAMT* 12.82 3.99 61.02 56.93 68.95 12.16 4.18 58.02 53.03 65.56
HAMT + Object Transformer 11.34 3.59 68.36 64.47 75.32 12.37 4.45 58.96 53.36 66.75
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On the other hand, Table 6.4 shows results on craft instructions in validation unseen.

In this object focused instructions, we achieve a 0.89% absolute improvement over the

baseline. Contrary to the results seen with the EnvDrop model, the improvement is slightly

lower than with R2R instructions. This reinforces the hypothesis that the other pre-training

tasks may already take the role of making the agent more object aware and their alignment

with object focused instructions.

Table 6.4. Results for trained HAMT models using Craft instructions.
These instructions don’t have data for the validation seen environment. *
are reproduced results.

Model Validation Unseen
PL (↓) NE (↓) SR (↑) SPL (↑) OSR (↑)

HAMT* 11.45 3.48 63.73 59.15 71.39
HAMT + Object Transformer 11.88 3.39 64.62 60.20 72.67

6.2. Ablation Study

Table 6.5 shows results when also including the object summary described in Equation

4.12. Results are slightly lower when including this summary in the recurrent step of the

agent’s decoder. This may imply that objects are more important for decoding the current

step than as a mean of maintaining a history of navigation.

Table 6.5. Ablation study results for EnvDrop model. COHS = Connec-
tionwise Object Heading Similarity. OS = Object Summary.

Model COHS OS SR (↑)

EnvDrop

39.4

✓ 41.0

✓ ✓ 40.5
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6.3. Qualitative Result

Figure 6.1 shows an example trajectory with its craft instruction for the base EnvDrop

agent and our EnvDrop + OLC agent. Here, the base agent fails and ours succeeds. The

base agent fails to exit the bedroom, whereas ours appears to have recognized the door and

bedroom objects and associated them with the “exit the bedroom” action. This shows the

relevance of understanding the objects it can see, so that it can follow an instruction that

relies on these references.
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(a) EnvDrop (fail) (b) EnvDrop + OLC (success). The three objects
with highest attention for the selected viewpoint
are shown in a red bounding box.

Figure 6.1. Instruction: “Exit the bathroom to the closet walking by the left
side of the pot. Walk forward. Go out of closet into the bedroom walking
with the rack on your right. Make a left, go straight with the bed on your
right. Exit the bedroom to the hallway. Make a right, exit the hallway to the
bedroom.” Example of an object focused trajectory from Ossandón et al.
(2022) where the base agent (6.1(a)) fails and ours (6.1(b)) succeeds. The
steps where trajectories diverge are surrounded in blue. The base agent fails
to exit the bedroom (step 6), while ours recognize the door and bedroom
objects, associating them with the “exit the bedroom” action.
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7. CONCLUSIONS

The vision and language navigation task requires agents to reach a destination by fol-

lowing a natural language instruction. It is expected that, by giving agents the natural

instructions and panoramic images as inputs and the ground truth paths as labels, they will

be able to learn all the abilities required to complete this task. This work shows that, by

giving the agents more detailed inputs and related tasks to learn, they will learn to navigate

better, translating into improved performance in the relevant metrics.

We detail two methods for including object information into the agent’s model archi-

tecture. The first is aimed for models that use a recurrent network as their base sequence-

to-sequence architecture, and it’s evaluated while integrated in the EnvDrop model. With

this method, we learn that taking special care into properly contextualizing the objects that

the agent sees is beneficial for action decoding, but not so much for maintaining a history

of navigation.

The second method is for transformer based architectures, which is evaluated as an

extension of HAMT model. With this, we learn that the benefits of object contextualization

are not as high as with a recurrent architecture. This is mainly because the other pre-

training tasks appear to already help in this regard.

Our main contribution is demonstrating that, by including object information during

training, agents learn an improved navigation strategy. This translates into increased per-

formance for the Room-to-Room task. Also, we see that, when instructions have a greater

focus on using objects as references for navigation, they obtain an even better perfor-

mance. This shows that objects are rich sources of information for this task.

Regardless of the obtained improvements, we also find that the performance increase

is much greater in validation seen than validation unseen. This translates into a bigger

generalization gap, showing that these models may be using these objects as a source of

overfitting, which decreases the potential impact it has for unseen environments. More
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care may be needed when training with this kind of data to avoid overfitting over seen

environments. Section 7.1 proposes some ideas to help overcome this problem.

We hope that this work also shows the benefit of grounding language models with real

world entities. We believe that visual information may help give concrete information of

the abstract ideas that can be expressed through natural language.

7.1. Future Work

7.1.1. Train with all environments

Due to limited computing resources, the EnvDrop model was trained in a subset of

Matterport3D environments. It is expected that the results obtained in this work should be

the same when training on all environments, as the information given by our module aims

to enrich the information received by the agent in these environments.

7.1.2. Use an object detector

Object metadata present in Matterport3D is messy and sometimes wrong. Some view-

points don’t have objects, and others report objects not present in that scene. Including

an object detector pre-trained in indoor scenes for obtaining the object features and labels

may improve their representations and, as a consequence, the agent’s performance and

generalization.

7.1.3. More auxiliary tasks

This work uses some auxiliary/pretraining tasks to help ground objects and rooms to

their real world classification. These tasks are all supervised, but self-supervision usually

has better generalization performance. Using self-supervised tasks may also help achieve

a better, more generalizable, grounding. In particular, a task where the agent must predict
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if the object is present in the instruction may help further the grounding of both textual and

visual inputs of the model. This may result in increased performance and generalization.

7.1.4. Object data augmentation

To overcome the object overfitting problems shown in this work, an approach similar

to Environmental Dropout may be taken with objects present in the scene. Objects seen

by the agent may be replaced at the feature level with other objects of the same class,

thus increasing the number of different types of the same object in each environment.

With this, overfitting on particular variations of objects should decrease, and their visual

representation will improve.
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A. DATA SOURCES

A.1. List of environments used during training and evaluation

For training the EnvDrop model with object data, a reduced set of environments were

used because of resource limitations. A list of the used environments follows

Training: One third of all environments were selected at random.

Uxmj2M2itWa 82sE5b5pLXE 2n8kARJN3HM 1pXnuDYAj8r

VLzqgDo317F p5wJjkQkbXX r1Q1Z4BcV1o HxpKQynjfin

PuKPg4mmafe cV4RVeZvu5T PX4nDJXEHrG VFuaQ6m2Qom

JF19kD82Mey sT4fr6TAbpF E9uDoFAP3SH XcA2TqTSSAj

8WUmhLawc2A EDJbREhghzL 1LXtFkjw3qL pRbA3pwrgk9

gZ6f7yhEvPG

Validation Seen: The selected environments are the same as those used in training.

Validation Unseen: All original validation unseen environments were used.

A.2. Selection of objects to include in training

Object metadata in Matterport are classified into a set of classes called mpcat40.

All objects present in the selected environments were included, except those with mp-

cat40 labels matching ”void”, ”wall”, ”floor”, ”ceiling” or ”unlabeled”.
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B. CODEBASE

B.1. Code Sources

The code for our models was based on publicly available code on GitHub:

• Matterport3D: https://github.com/niessner/Matterport.

• Matterport3D simulator: https://github.com/peteanderson80/Matterport3DSimulator.

• EnvDrop model: https://github.com/airsplay/R2R-EnvDrop.

• HAMT model: https://github.com/cshizhe/VLN-HAMT.

B.2. Our code

The code for our models was based on publicly available code for Environmental

Dropout and HAMT. Our editions of the code are available on the following forked re-

pos:

• EnvDrop: https://github.com/MrEarle/R2R-EnvDrop-ObjAttn

• HAMT: https://github.com/MrEarle/HAMT-ObjAttn
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